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Abstract 

e An important consideration in the use of manipulators in Microgravity environments is the 
minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the 
manipulator on its base as it peflonns its tasks. One approach which has been proposed and 
implemented is to use the redundant degrees of freedom in a kinematically redundant 
manipulator to plan manipulator trajectories to minimize base reactions. In this paper we 
develop a global approach for minimizing the magnitude of the base reactions for kinematically 
redundant manipulators which integrates the Partitioned Jacobian method of redundancy 
resolution, a 4-34  joint-trajectory representation and the minimization of a cost function which 
is the time-integral of the magnitude of the base reactions. We also compare the global approach 
with a local approach developed earlier for the case of point-to-point motion of a three degree- 
of-freedom planar manipulator with! one redundant degree-of-freedom. The results of study 
show that the global approach is more effective in reducing and smoothing the base force while 
the local approach is superior in reducing the base moment. 
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1. Introduction 
Recently there has been a lot of inlerest in the use of kinematically redundant manipulators for various 

applications like obstacle avoidance and sinlgularity avoidance [2-4]. In this paper we want to utilize the well-known 
idea that kinematic redundancy provides thle analyst or designer with additional degrees of freedom which can be 
exploited for "useful" purposes. Specifically we are interested in the planning of trajectories for manipulators which 
are used in space applications [ 11 and typically operate in microgravity environments. 

An issue of considerable importance for manipulators used in Microgravity environments is the minimization 
of the magnitudes of the dynamic reaction force and moment exerted by the manipulator on its base as it performs 
its task. One reason for minimizing, and if possible eliminating base reactions, is that the base force and base 
moment could disturb other tasks or experiments in the vicinity. 

In this paper we address the issue of using kinematic redundancy to plan joint-space trajectories which 
minimize the reactions transmitted by the manipulator to the base. A local approach to this problem is described and 
implemented in [8-91: in this approach a performance index or cost function was minimized at each time segment. 
One of the problems with the local approach was that it led to undesirable "peaks" in the base reactions as shown in 
Fig.(@. In this paper, we propose and implement a global approach which is based on minimizing an integral 
performance index over the entire end-effecmr mjectory. 

The rationale which underlies our approach is as follows. The uajectory-planning problem for a manipulator 
reduces to the problem of solving the inverse-kinematic problem for the joint-variables (or "joint-space" trajectory ) 
given the specified trajectory in the task space. In the case of a (kinematically) redundant manipulator the inverse- 
kinematic problem has an infinite numbex of solutions. ?he basic idea is to pose an optimization problem of 
minimizing the base reactions in order to obtain joint-space trajectories (which minimize base reactions). In this 
paper we develop a global approach which integrates the Partitioned Jacobian method of redundant resolution, a 
4-34  joint-trajectory representation (described in Section 3.3) and the minimization of a cost function which is the 
time-integral of the magnitude of the base :reactions. We also compare the global approach with a local approach 
developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one 
redundant degree-of-freedom. 

The contents of the paper are organiuxl as follows. In Section 2 we develop a statement of the problem to be 
addressed in this paper. In Section 3, we show how the Partitioned Jacobian method of resolving kinematic 
redundancy can be used to develop a Globad approach for minimizing the magnitude of the base reactions. In this 
section we also briefly describe the local approach used in [89]  since we are interested in comparing the two 
approaches. The global and local approaches are then applied (Section 4) to obtain the optimal joint trajectories 
which minimize base reactions for a redundant three degrees of freedom planar manipulator (with 1 redundant 
degree of freedom for its intended task of moving from point-to-point in the workspace). A simple sensitivity study 
is also carried out in order to get some feel for the "goodness" of the optimized trajectory. The results of the case 
study (of Section 4) are then discussed in some detail in Section 5. Finally, in Section 6 we summarize the work and 
draw some conclusions. 

2. Statement of the Problem 
Consider an m degrees of freedom rnlanipulator with m revolute or prismatic joints. Let qi denote the joint 

variable at joint i, the joint variable of each joint is either an angle 0, (revolute joint) or a distance 4 (prismatic 
joint). For an m degrees of freedom manipulator, the joint displacement vector q can be defined as 

(1) 
Let E be an arbitmy point on the end-effector as shown in Figure 1. The position of E can be represented with 

q = 1 q1, q2, ..a. * Q IT. 
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reference to the coordinate frame {U} fixed in the base by 

(2) 
The kinematic equations relating the end-effector position r and the joint variable vector q can be expressed as 
follows: 

where g is a vector of functions which are nonlinear in q(t). 

r = [ x y z IT. 

r(0 = s(q(0). (3) 

The trajectory planning problem for manipulators is to determine the joint variables q(t) for a specified 
end-effector trajectory r(t). For a redundant manipulator, the number of degrees of freedom, m is more than the 
minimum number of degrees of freedom required to perform a task which is denoted by n. Therefore, from equation 
(3) we can see that there are an infinite number of joint space solutions q(t) for a specified end-effector position, 
r(t). This means that we can take advantage of the redundancy of (kinematically) redundant manipulators to 
optimize some suitable dynamic criterion. The optimization of this dynamic criterion will then, in general, yield a 
unique (joint space) solution for the joint variables q(t). 

An important problem which arises in the use of manipulators in space is the minimization of the magnitudes 
of the reaction force and moment transmitted to the base of the manipulator as the endeffector of the manipulator 
follows a specified trajectory. Let Fo and No, respectively, denote the force vector and moment vector (see Figure 
1) transmitted to the base of the manipulator and define 

We will call Fb the base reaction vector. The dynamic equations relating the motion of the manipulator to the force 
and moment transmitted to the base (in a microgruvify environment) can be represented in the following form: 

FbT = FoT NoT]. (4) 

F, = Mb(q) q +v(q,q), (5 )  

where Mb(q) is a mass matrix and V(.) denotes all terms which are nonlinear in q. (In Appendix 2 we give 
expressions for F,, M, and V for a planar 3 d.0.f. manipulator). 

Since we are interested in minimizing the base reactions, we must select a cost function B which is an 
appropriate function of the base reaction vector F,. i.e. 

B=f lFb) .  (6) 

Since Fb is a function of (q, q. q), B is also a function of (9, q, 3. Therefore minimization of the magnitude 
of the base forces and base moments reduces to determining the joint space trajectory q(t) which will mimimize the 
cost function B. 

We arc now in a position to state the objectives of this paper 
1. Given a specified trajectory of the end-effector, use kinematic redundancy to develop an approach for 

planning the corresponding joint-space trajectories q(t) in order to mimimize a cost function which is a 
measure of the time-integral of the magnitude of the base reactions. This approach is called the Global 
Approach. 

2. Compare the global approach with the local approach developed in [8,9]. 

3.Study the sensitivity of the (global) cost function with respect to (small) changes in the joint 
trajectories. 

In the next section we develop the global approach and very briefly describe the local approach. 
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3. Description of Approach 
The general problem of obtaining unique inverse kinematic solutions for redundant manipulators is termed 

"redundancy resolution". Even though there are a variety of approaches (which are mostly based on the pseudo- 
inverse of the manipulator Jacobian) proposed for resolving the redundancy of redundant manipulators, relatively 
few approaches [5,6,7,8,9] address the problem of utilizing redundancy for optimizing dynamic criteria such as 
torque optimization [5,6,7] or base reaction minimization [8,9]. Hollerbach and Suh [5] investigated a few local 
approaches based on the pseudo-inverse for optimizing joint torques. The results of their study show that the local 
approach leads to "unstable" solutions for some trajectories. Nakamura [7] proposed a pseudo-inverse approach 
based on the Pontrayagin's Maximum Principle for globally optimizing the energy used in performing task. Suh and 
Hollerbach [q investigated the problem of torque optimization using local and global approaches based on the 
pseudo-inverse. It was found that the global approach does not have a stability problem and outperforms the local 
approach [5 ]  at all times. However, the global approach proposed in [6.7 is complex to formulate and solve, and 
limits on joint angle, joint velocity, and torques cannot be included in the optimization problem. The shortcomings 
of the pseudo-inverse approach in general are clearly given in [ 141. 

In contrast to the pseudo-inverse approach, we describe an alternative approach, based on partitioning the 
manipulator Jacobian matrix [4], which is particularly well suited to the base reaction minimization problem. The 
first application of the Partitioned Jacobian approach to the base reaction minimization problem was a local 
approach described in [89]. The primary aim of this paper is to develop and implement a global approach which 
utilizes the Partitioned Jacobian method of resolving redundancy. The global approach is described in Section 3.3. 
Since we also want to compare the global approach with the local approach, the local approach is describd briefly 
in Section 3.2. The Partitioned Jacobian method of resolving redundancy is explained in Section 3.1. 

3.1. Redundancy Resolution 
Consider an m degree-of-freedom redundant manipulator. If the velocity v of a reference point on the 

end-effector is represented by an (ml) column vector, then we can write the following relationship between v and 

the (mxl) column vector q of rates of change of joint variables: 

where J is an (mm) manipulator Jacobian matrix. (q will be referred to as the joint "velocity" vector for shofi) 

Differentiating Eq. (7) with respect to time, the acceleration of the end-effector is 

For redundant manipulators. the Jacobian matrix, J is not a square matrix. Therefore for a given endeffector 

velocity v, the Jacobian cannot be inverted to obtain the corresponding joint "velocity" vector q. In order to obtain 
joint space solution. we use the Partitioned Jacobian approach developed in [4]. Using this approach, the joint 
variable vector can be partitioned into, 

where q, an (m-n)xl column vector, is called the redundant joint vector and qnrl an nxl column vector. is called the 
nonredundant joint vector. 

QT = s,T Q,T 1. (9) 

Eq. (7) can then be written in the form 

e 
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We have therefore partitioned the Jacobian J as follows 
J = [ J,,, J, 1 

Commenr.It is always possible to finti a vector of n non-redundant joint variables q, such that J,, is an 
invertible (i.e. non- singular) matrix except at a finite number of singularities. 

Eq. (8) can be written as follows: 
.. 

i. = J, q, + J, 4, + J, q,r + J, & 

In the approaches described below, one specifies the redundant joint variable vector q, (t) to be a convenient 

(vector) function of time from which q, (t) is readily obtained. Equation (13) can then be used to determine the 

non-redundant joint variable velocity vector &(t); from the latter q,,(t) can be obtained by integration. 

3.2. Local Approach 
In the local approach, the total time of  the task is divided into a number of time segments. For convenience, 

assume that the duration for each time segment is the same. If q, is the joint velocity vector of the redundant joints 

at the start of any time-segment At and q, is the joint velocity vector of the redundant joints at the end of the time 
segment, then we can write 

4, = il,+Aq,, (15) 

4 ? r ' = q * f ' ( o + q 2 P ( r ) +  ...+qltp(O 

where Aq, can be approximated by a linear combination of shape-function P(t), i-1.2,. .... k as follows 

. .  
a;l,<m-.)= C(-)I f (O + C(,-)&O + ... + c(*n)/(I). (16) 

where G:, it(l.2, ...., (m-n)), is the i* element of Aqr The use of shape functions in optimization of torques of 
non-redundant manipulators is described in [ll3]. 

If C denotes the matrix of parameters cij. i=(l,..,(m-n)), j=(l,2,..Jc), and f(t) is a column vector whose ith 
element is fi(t), then Eq.(16) can be written in1 a more compact form 

&, = Cf(t). (17) 

Combining Eq.(15) and Eq.(17) we obtain 
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q, = q,o+cr(t). 
For convenience, P(t) is chosen to be polynomials ti-*, ( i = l L . k )  and therefore f(t) is given by 

where k is the degree of the polynomial selected for qr. 
f(t) = [ 1 t t2 ... tk-' IT, 

Substituting Eq.(18) in Eqs.(13-14), they become 

Now, we can compute the values of q, q. and q as functions of the elements cij of the C matrix for each time 
segment. For an arbitmy manipulator configuration, the base reactions (Fo and No) at the end of each time step are 
therefore functions of the elements of the C matrix. In Section 3.4 (see Eq. 37) we will present a local cost function, 
B(C) that is a measure of the magnitudes of the base force and base moment at the end of each time segment. Using 
that cost function we can pose the inverse kinematic problem as an minimization problem which yields the optimal 
C matrix for each time segment. For further details refer to [8,9]. 

33. Global Approach 
In conuast to the local approach where the magnitudes of the base reactions at the end of each time segment is 

optimized, the global approach described below optimizes a cost function which is a time-integral of the magnitudes 
of the base force and base moment over the whole time interval, T~ 

Using the redundancy resolution scheme developed in Section 3.1, the redundant joint trajectories are used in 
the optimization of appropriate dynamic criteria such as the minimization of the magnitudes of the base reactions. 
The redundant joint velocity vector representation, Eq. (18) used in the local approach would be difficult to 
implement for a time integral cost function. In the local approach. for each time segment we have (m-n)xk 
parameters (Le. the elements cij of the mamx C). If the total time is divided into 1 time segments, then we would 
have lx(m-n)xk parameters to determine for global approach. To keep the number of parameters required for the 
representation of the redundant joint variables small, we use the simpler representation described below. 

One of the intuitive requirements for the redundant joint trajectories is that the joint trajectories have to be 
smooth. Also, the angular velocity and acceleration at both of the initial and final points of the redundant joint 
trajectories should be zero. One way of representing this family of curves is the use of higher order polynomials 
(splines) to satisfy the velocity and accelerations boundary conditions. Since very high order polynomials exhibit 
unpredicted behaviors, a popular method is to break a joint trajectory into a number of segments which can be 
represented by lower order polynomials such as third and fourth order ones. These segments will satisfy the 
boundary conditions and are continuous from one segment to another. The representation considered in this paper is 
a three-segment method which consists of two fourth-order polynomials for the initial and fmal segments and a third 
order polynomial for the transition segment. "his method is known as the 4-34  joint trajectory representation. The 
details of this representation can be found in [lo]. As shown in Figure 2, a typical 4-34  joint trajectory for each 
joint consists of three segments:an initial section (el(t)), a transition section (02(t)), and a final section (e3(t)). 
Basically, curves described by this method are functions of the initial and fmal joint points (ei and 8, ), the time 
period of the transition segment(%), the total time (7,) and the angular displacement traversed during the transition 
period (Q. The expressions for e,(t), e,,.t), and e3(t) are given in Appendix 1. 
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33.1. Three-parameter Joint Trajectory Representation 

factor, j3 (0 < j3 < 1) 
The 4-34 joint trajectory can be simplified by considering the following normalized parameters: (a) time 

where T~’S are time intemals for the three segments (see Fig. 2); 

(b) angular displacement factor, a 

62 

where 6i’s are angular displacements traversed during the ith time interval (see Fig. 2), i=1,2,3. 

For T~ = T~ and 6, = 6,, we have the following relationships: 
6, = ef0 a’ 

%=Ofoa 

S, = Of0 a’ 

%2=‘5fP 

73 = Tf F, 
where 8, = 8, - 8 ,  Tf is the total time of the task, a’ = (1 - a)/’,? and p’ = (1 - p)/z. 

Note: the above variables, defined by Eqs. (24) through (29) are functions of a, Tr, p.8,. and 8,. In general, for 
the redundant manipulator inverse kinematic problem, the initial angular position(Oi) for the redundant joint variable 
and the total time of the task (Tf) are usually specified. Therefore, there are only three unknown paremeters, namely 
a, 8 ,  and p for each degree of redundancy. Using these parameters, we obtain a three-parameter joint trajectory 
representation (based on the 4-34 joint trajectory representation) for the redundant joint variables. The j* element 
of the redundant joint velocity vector. q j  can be expressed as 

where 8i(t) denotes the polynomial for the k* segment, (k=1,2,3). of the/* redundant joint variable, j=1,2, ..(m-n) 
and $3 are shown in Fig. 2. 

q,i(t) = e& for rkl 5 fak ,k= 1.23 (30) 

Figure 3 illustrates the curves generated by different combinations of a and j3. Note that these curves are 
smooth and satisfy the boundary conditions. 

In the next section, we show how the three-parameter joint trajectory representation for redundant joint 
variables can be used to find a joint space solution (Le. inverse kinematic solution) for the redundant manipulators. 

33.2. Global Optimization Problem Formulation 
For a redundant manipulator with (m-n) degrees of redundancy, the application of the three-parameter scheme 

to represent each of the (m-n) redundant joint variables yields q, as a function of 3x(m-n) number of parameters, aJ, 
pi, and 8;. j=l,2,..(m-n), which need to be determined. Using Eq. (13). qnr can also be determined as a function of 
these 3Nm-n) parameters. Let a, E, and & denote (m-n)xl column vectors whose element is denoted, 
respectively, by aj, pi. and 8). 
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The cost function B which is a function of the base reactions and therefore a function of q, q, q. can be 
expressed as a function of a. e. and & (see procedure below for details). Therefore the optimization problem can be 
posed as follows: 

minimize B @, e, &) 

subject to the constraints 

O<aJ<l.and 

o < @ < 1, j=1,2,..(m-n). (3 1) 
For the global approach B is a time-integral cost function defined in Section 3.4 (Eq. 35) below, which is a measure 
of the magnitude of the base reactions. and 8imu are selected based on the information on the joint limits. 

Fig. 4 depicts a simplified flow-chart which captures the essence of the the global approach. The procedure 
for the global approach, corresponding to the flowchart in Fig. 4, is as follows: 

1. Initialize the parameters vectors g, e, and & . 
2. Using the 4-34 redundant joint representation (Eq. (30) and Appendix 1) obtain 9,. q,, and q, as 

3. Using Eq. (13) and (14), respectively, to determine qnr and q,,, as a function of g, e. and &. 
4. Obtain the non-redundant joint variable vector q,, by integrating q,, (obtained in Step 3). We now 

functions of a, e, and gf for the time interval T~ 

have q, 4, and as a function of a, E, and gp 

as a function of a, 1, and &. 
5. Use the dynamic equations (Eq. (5))  and the results of Step 4 to determine the base reaction vector F,, 

6. Define a suitable time-integral cost function B of the base reactions F, (see Sections 3.4 and 4.2). 

7. Combine the results of steps 5 and 6 to obtain the cost function B as a function of a, e, and &. 
8. Apply the Hooke and Jeeves optimiultion method [12], to update the parameter vectors - a, e, and &. 
9. Repeat Steps 2 through 8 until the parameters vectors converge to their optimal values g, e. &. a * f i  

Once the optimal values of a, E, and & have been obtained. the optimal joint space trajectories vector q(t) are 
readily determined. 

3.4. Cost Function 
The selection of a suitable cost function is crucial in obtaining a joint space solution that minimizes base 

reactions. In this section, we discuss the issue of selecting a proper cost function which can be used as a measure of 
the magnitudes of the base reactions (F, and NJ. 

In general, the magnitude of the base force is given by 

F, = (FOl2 + Fo? + Fd2)lR. 

No = mol2 + Nd2 + No?)ln. 

and the magnitude of the base moment is 
(32) 

(33) 

. 

We introduce two weighting factors (wl and w2) that enable us to place appropriate weights on the base force 
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and base moment components. The cost function B can be expressed as 
B=wlF:+wfl:, for the local approach, and 

"wl F: + w2 N: dt, for the global approach. .=I, 
Define 

Q= [ :11 12j. 
We can write Eqs. (34) and (35) in a more compact matrix form as follows: 

and 
B = FbTQ Fb 

(34) 

(35) 

(36) 

(37) 

The weights w1 and w2 must be carefully chosen to : (1)appropriately scale the base reactions with respect to 
a reference set of base reactions and (2)ensure that all quantities in the cost function are dimensionally 
homogeneous. The choice of appropriate weights will be dealt with in Section 4.2. 

4. Illustrative Example 
In this section we apply the basic approaches described in the paper to minimizing the base reactions of a 

three degree-of-freedom planar manipulator. The task is a point-to-point motion of the end-effector from a specified 
initial position to a specified f d  position. Using the above approaches, we would like to plan a trajectory in the 
joint space to minimize the magnitudes of the base reactions as the manipulator moves from the initial position to 
the final position. 

In this problem, for the planar manipulator, m=3; since we are interested in the position of the end-effector, 
n=2. Therefore we have (m-n)=1 degree of redundancy. The redundant link of this problem is chosen to be the first 
link which is attached to the base (qr=ql). 

The base reactions dynamic equations of the 3 d.0.f. planar manipulator are in Appendix 2 and the link 
dimensions and mass properties are given in Appendix 3. 

We study the following four cases: 
1. The minimization of the time-integral of the magnitude of the base moment only. 

2. The minimization of the time-integral of the magnitude of the base force only. 

3. The minimization of the time-integral of an appropriately weighted combination of the magnitudes of 
the base force and base moment. We use the results of cases (1) and (2) to show how the weights wl 
and wz should be chosen. 

4. A sensitivity analysis of the sensitivity of the cost function of Case (3) with respect to small changes in 
(the parameters of) the joint space trajectories. 

- 

. 
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4.1. End-effector Trajectory 

final position can be expressed as 
The distance measured from the initial position along a straight line which connects the initial position and the 

where b is an arbitrary constant and ff is the total time of the task. The speed of the end effector is given by 

v( r )  = b(1- cos&). 
ff 

Fig. 5 shows the desired velocity and accelemtion profdes of the endeffector. 

The initial position of the end effector is (x.y) = (0.0. 1.2,071) (m) which corresponds to an initial manipulator 
configuration, qT=[4S0, 45",45"]. The desircd final position is (x,y) = (0.3536,0.8535) (m). The following values 
are chosen for the trajectory: 

f f = 2.0 s 
b = 0.25 
d(ff) = 0.5 m 
A t = 0 . 1  S. 

4.2. Cost function [Case Studies 1 - 41 
To minimize the base reactions properly, it is importani. to select a suitable weighting matrix Q for the cost 

function. Therefore, the choices of the two weighting factors (wl and w2) are crucial. To understand the effects of 
these weighting factors on the base reactions, three cases of different Q matrices are studied. We only show the cost 
functions for the global approach. The cost function for the local approach can be obtained by Eq. (37). 

(a)Cuse Study 1 

In this case study we select a cost function that only minimizes the magnitude of the base moment in order to 
determine how small the magnitude of the base moment can be made. We simply choose wl=O and wz=l in Eq. 
(36) to obtain the weighting matrix 

Q1= [ ," :I. (41) 

and the corresponding cost function (from Eq. 38) 

B = J 2 : d i .  

(b) Case Srudy 2 

In this case, we want to know the eixtent to which the magnitude of the base force component can be . minimized by choosing wl=l and w2=0 in Eq. (36) to obtain the matrix 

T Q2= [: I], 
and the corresponding cost function (from Eq. 38) rakes the form 
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(c) Case Study 3 

In general, we want to minimize the magnitudes of both the base force, Fo and the base moment, No 
transmitted to the base. Since Fo and No are different physical quantities, we require a weighting mamx Q to 
non-dimensionalize and to appropriately s i l e  the base force and base moment components. The results of Case 
studies 1 and 2 are important in this regard. 

The average value of the base force (FJ transmitted to the base in Case Study 1, FIvg is a measure of how 
small we can make the base force. Similarly, the average value of the moment transmitted to the base in Case Study 
2, NIvg is a measure of how small we can make the magnitude of the base moment. We therefore choose, 

The weighting matrix therefore is given by 

Q3= [: %], 
where 

1 
w1=- 

Fovgz 
1 

w2=- 
Nav:' 

Note that the above choices of wl and w2 simultaneously achieve the desired scaling and non- 
dimensionalization. 

(d)Case Study 4 (Sensitivity) 

In practice, it is impossible to realize die exact optimal joint trajectories due to the errors in the control system 
and noise and uncertainties in the system. Therefore, it is important to examine how sensitive the base reactions are 
to the deviations of the joint trajectories fiom the optimal solution. The global approach provides us a simple means 
of studying this issue. One way of studying ithis issue is to introduce perturbations about the optimal values of a, PI 
and 8, obtained from Case Study 3. The following three cases in each of which one of the three parameters is 
increased by 20% were studied: 

case a : the optimal value of a, viz & is xeplaced by 1.2 6 
case b : the optimal value of p, viz ̂ p is replaced by 1.2 fi 
case c :the optimal value of 8 ,  viz is xeplaced by 1.2 gP 
In the next section, the results of these case studies will be presented and discussed. 

5. Discussions of Results 
We arc interested in the effectiveness of the proposed global approach in minimizing the magnitudes of the 

base force and base moment as well as in comparing this approach with the local approach. We therefore, plotted 
the magnitudes of the base force and base moment (corresponding to the optimized trajectory) for each of three 
cases enumerated in the previous section. From an examination of the results shown in Figs. 6 through 11, the 
following important conclusions/points should be noted 
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(1)First consider the magnitude of the force transmitted to the base shown in Fig. qa )  (for Case Study l), Fig. 
7(a) (for Case Study 2), and Fig, 8(a) (for CiN Study 3). Each one of these figures has two plots corresponding to 
the global and local approaches. As might be, expected, the magnitude of the base force is the lowest for Case Study 
2 where only the base force is being minimized (see Fig. 7(a)). Furthermore, as shown in Fig. 7(a), the global 
approach "smooths" out the peak in the magnitude of the force which is seen in the local approach at t=0.8 second. 

(2) Next consider the magnitude of the moment transmitted to the base as shown in Fig. 6(b) (for Case Study 
1). Fig. 7(b) (for Case Study 2) and Fig. 8@) (for Case Study 3). Once again each one of these figures has 2 plots 
corresponding to the local and global approaches. For the local approach, Case Studies (1) and (3) yield very small 
base moment, while Case Study (2) (base force minimization only) yields a relatively high base moment. In 
contrast, for the global approach, the magnitudes of the moment transmitted to the base is virtually independent of 
the cost function (Le. whether we are minimizing the magnitudes of the base force, the base moment or the 
combination of the two). We also see (Figs. 6@), 7@), and 8@)) that the local approach is more effective than the 
global approach in minimizing the magnitudes of the base moment. 

(3) We can summarize the conclusions in (1) and (2) above by the following two statements: 
(a) The global approach is the better approach for reducing the magnitude 
of the base force whereas the local apprciach is superior for reducing the 
magnitude of the base moment. 

(b) In the global approach it is sufficient to minimize the magnitude of the 
base force. 

(4) The second derivative of the joint variables (joint "'accelerations") for each one of the three joints are 
shown in Fig. 9. both for the local and global approaches: we observe that very similar acceleration profiles are 
obtained for these two approaches. The correpsonding manipillator configurations are shown in Fig. lqa)  (for the 
local approach) and Fig. lO(b) (for the global approach). One should make careful note , both from Figs. 9 and 10. 
of the "sense" of motion of the tlme links. The results shown in Figs. 9 and 10 correspond to Case Study 3. 

(5) The results of h e  simple sensitivity study are shown in Figs. 1 l(a) (magnitude of the base force) and Fig. 
1 l(b) (magnitude of the base moment) for the global approach and the cost function of Case Study 3. m e  optimal 
results are shown in dashed lines with the perturbed results shown in solid lines). The following two conclusions can 
be reached from the results as shown in Fig. I 1. 

1.The magnitude of the base moment is relatively insensitive to small changes in the trajectory 

2. The magnitude of the base force is quite sensitive to e,, the fmal position of the redundant link (Fig. 
(parameters). (Fig. 11 (b)). 

1 l(a)). (The "redundant" link was selected to be the link attached to the base in Fig. 10.) 

6. Summary and Conclusions 
In this paper we have developed a gllobal approach for minimizing the base reactions of a kinematically 

redundant manipulator used in microgravity environments. The global approach utilizes the Partitioned Jacobian 
method of redundancy resolution. the 4-34 method of joint-trajectory representation and the minimization of a cost 
function which is a time-integral of the magnitude of the base ,reactions. We also compared the global approach of 
this paper with a local approach developed earlier. 

The application of the global and local approaches to a planar 3 d.0.f. manipulator with 1 redundant degree of 
freedom demonstrated the effectiveness of the global approach in smoothing out undesired "peaks" in the force 
transmitted to the base which were observed in the local approach. We also learned that the global approach was 
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more effective in reducing the magnitude of the base force while the local approach was more effective in reducing 
the magnitude of the base moment. A simple sensitivity analysis performed on the optimal trajectory obtained for 
the global approach revealed that the magnitude of the force transmitted to the base is more sensitive to the final 
configuration of the links. We plan to do an extensive sensitivity analysis in the future. 

The approach will be implemented on a 4 d.0.f. traction drive manipulator for space application which is 
currently under consauction. 
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Appendix 1 : Equations for 4-3-4 joint trajectory representation. 

The equations for 4-3-4 joint trajectory representation can be found in [lo]. The equations of 6,(t). j=1,2,3 of 
the three-parameter representation are: 

For segment 1. 

e, (7) = (ejo"'- 0).r4 + m3 + ei 
0 1 ~  = [4(~i,~a'- a>$ + 3 d l / r ,  
e, ('5) = [ i2(e,,a0+)? + ~ a r l / r , ~  

where 8, = initial joint position, 
'L = normalized time (0.1) = f/T1 

a=l/s 

L 
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Appendix 2 : Base Reaction Dynamic :Equations 

The following variables are defined 
mi = total mass of the link i 

li = length of link i 

lci = distance measured from the axis of :pint (i- 1) to the centroid of link i 

li = moment of inertia about the centroid of link i 

For the 3 d.0.f. planar manipulator stuidied in this paper, the base force vector has a x-direction component, 
(FJx and a y-direction component, (F,,),,, and the base moment vector has only a z-direction component, (NJz. The 
base reactions dynamic equations are given by 

h t  the ekments of Mb be mbij, (i=12,3) and (i=12,3). And for convenience, we denote cos(i+ ...+j) by ci ... 
and sin(i+ ...+j) by siemj. We have the following equations 



26 

Appendix 3:Physical Dimensions and Mass Roperties 

The physical dimensions and the mass properties of the three degree-of-freedom planar manipulator are given 
in Table 1. The link length. mass, and inertia of the link are denoted by l,.,mi, and I i  respectively. The centroid of 
the link is assumed to be at the center of the link. 

Table 1 : Simulation Data for 3 d.0.f. Manipulator 

link 1 2 3 

m,.@g) 1 .o 1 .o 1 .o 
q m >  0.5 0.5 0.5 

Ii@g m2) 0.0208 0.0208 0.0208 
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